44 research outputs found

    Catchments as space-time filters ? a joint spatio-temporal geostatistical analysis of runoff and precipitation

    No full text
    International audienceIn this paper catchments are conceptualised as linear space-time filters. Catchment area A is interpreted as the spatial support and the catchment response time Tis interpreted as the temporal support of the runoff measurements. These two supports are related by T~A? which embodies the space-time connections of the rainfall-runoff process from a geostatistical perspective. To test the framework, spatio-temporal variograms are estimated from about 30 years of quarter hourly precipitation and runoff data from about 500 catchments in Austria. In a first step, spatio-temporal variogram models are fitted to the sample variograms for three catchment size classes independently. In a second step, variograms are fitted to all three catchment size classes jointly by estimating the parameters of a point/instantaneous spatio-temporal variogram model and aggregating (regularising) it to the spatial and temporal scales of the catchments. The exponential, Cressie-Huang and product-sum variogram models give good fits to the sample variograms of runoff with dimensionless errors ranging from 0.02 to 0.03, and the model parameters are plausible. This indicates that the first order effects of the spatio-temporal variability of runoff are indeed captured by conceptualising catchments as linear space-time filters. The scaling exponent ? is found to vary between 0.3 and 0.4 for different variogram models

    Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging

    Get PDF
    Recent studies highlight that spatial interpolation techniques of point data can be effectively applied to the problem of regionalization of hydrometric information. This study compares two innovative interpolation techniques for the prediction of low-flows in ungauged basins. The first one, named Physiographical-Space Based Interpolation (PSBI), performs the spatial interpolation of the desired streamflow index (e.g., annual streamflow, low-flow index, flood quantile, etc.) in the space of catchment descriptors. The second technique, named Topological kriging or Top-kriging, predicts the variable of interest along river networks taking both the area and nested nature of catchments into account. PSBI and Top-kriging are applied for the regionalization of <i>Q</i><sub>355</sub> (i.e., a low-flow index that indicates the streamflow that is equalled or exceeded 355 days in a year, on average) over a broad geographical region in central Italy, which contains 51 gauged catchments. The two techniques are cross-validated through a leave-one-out procedure at all available gauges and applied to a subregion to produce a continuous estimation of <i>Q</i><sub>355</sub> along the river network extracted from a 90m elevation model. The results of the study show that Top-kriging and PSBI present complementary features. Top-kriging outperforms PSBI at larger river branches while PSBI outperforms Top-kriging for headwater catchments. Overall, they have comparable performances (Nash-Sutcliffe efficiencies in cross-validation of 0.89 and 0.83, respectively). Both techniques provide plausible and accurate predictions of <i>Q</i><sub>355</sub> in ungauged basins and represent promising opportunities for regionalization of low-flows

    Prediction of streamflow regimes over large geographical areas: interpolated flow–duration curves for the Danube region

    Get PDF
    ABSTRACTFlow–duration curves (FDCs) are essential to support decisions on water resources management, and their regionalization is fundamental for the assessment of ungauged basins. In comparison with calibrated rainfall–runoff models, statistical methods provide data-driven estimates representing a useful benchmark. The objective of this work is the interpolation of FDCs from ~500 discharge gauging stations in the Danube. To this aim we use total negative deviation top-kriging (TNDTK), as multi-regression models are shown to be unsuitable for representing FDCs across all durations and sites. TNDTK shows a high accuracy for the entire Danube region, with overall Nash-Sutcliffe efficiency values computed in a leave-p-out cross-validation scheme (p equal to one site, one-third and half of the sites), all above 0.88. A reliability measure based on kriging variance is attached to each interpolated FDC at ~4000 prediction nodes. The GIS layer of regionalized FDCs is made available for broader use in the region

    eHabitat, a multi-purpose Web Processing Service for ecological modeling

    Get PDF
    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Societal Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond simple data sharing to encourage the publishing and combination of models, an approach which can ease the handling of complex multi-disciplinary questions. It is the purpose of this paper to illustrate these concepts by presenting eHabitat, a basic Web Processing Service (WPS) for computing the likelihood of finding ecosystems with equal properties to those specified by a user. When chained with other services providing data on climate change, eHabitat can be used for ecological forecasting and becomes a useful tool for decision-makers assessing different strategies when selecting new areas to protect. eHabitat can use virtually any kind of thematic data that can be considered as useful when defining ecosystems and their future persistence under different climatic or development scenarios. The paper will present the architecture and illustrate the concepts through case studies which forecast the impact of climate change on protected areas or on the ecological niche of an African bird

    Top-kriging - geostatistics on stream networks

    Get PDF
    International audienceWe present Top-kriging, or topological kriging, as a method for estimating streamflow-related variables in ungauged catchments. It takes both the area and the nested nature of catchments into account. The main appeal of the method is that it is a best linear unbiased estimator (BLUE) adapted for the case of stream networks without any additional assumptions. The concept is built on the work of Sauquet et al. (2000) and extends it in a number of ways. We test the method for the case of the specific 100-year flood for two Austrian regions. The method provides more plausible and, indeed, more accurate estimates than Ordinary Kriging. For the variable of interest, Top-kriging also provides estimates of the uncertainty. On the main stream the estimated uncertainties are smallest and they gradually increase as one moves towards the headwaters. The method as presented here is able to exploit the information contained in short records by accounting for the uncertainty of each gauge. We suggest that Top-kriging can be used for spatially interpolating a range of streamflow-related variables including mean annual discharge, flood characteristics, low flow characteristics, concentrations, turbidity and stream temperature

    Mapping ignorance: 300 years of collecting flowering plants in Africa

    Get PDF
    Aim: Spatial and temporal biases in species-occurrence data can compromise broad-scale biogeographical research and conservation planning. Although spatial biases have been frequently scrutinized, temporal biases and the overall quality of species-occurrence data have received far less attention. This study aims to answer three questions: (1) How reliable are species-occurrence data for flowering plants in Africa? (2) Where and when did botanical sampling occur in the past 300 years? (3) How complete are plant inventories for Africa?. Location: Africa. Methods: By filtering a publicly available dataset containing 3.5 million records of flowering plants, we obtained 934,676 herbarium specimens with complete information regarding species name, date and location of collection. Based on these specimens, we estimated inventory completeness for sampling units (SUs) of 25 km × 25 km. We then tested whether the spatial distribution of well-sampled SUs was correlated with temporal parameters of botanical sampling. Finally, we determined whether inventory completeness in individual countries was related to old or recently collected specimens. Results: Thirty-one per cent of SUs contained at least one specimen, whereas only 2.4% of SUs contained a sufficient number of specimens to reliably estimate inventory completeness. We found that the location of poorly sampled areas remained almost unchanged for half a century. Moreover, there was pronounced temporal bias towards old specimens in South Africa, the country that holds half of the available data for the continent. There, high inventory completeness stems from specimens collected several decades ago. Main conclusions: Despite the increasing availability of species occurrence data for Africa, broad-scale biogeographical research is still compromised by the uncertain quality and spatial and temporal biases of such data. To avoid erroneous inferences, the quality and biases in species-occurrence data should be critically evaluated and quantified prior to use. To this end, we propose a quantification method based on inventory completeness using easily accessible species-occurrence data.J.H. was funded by a Spanish DGCyT Ramón y Cajal grant and by a CNPq Special Visiting Researcher grant (no. 401471/2014-4).Peer Reviewe
    corecore